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EQUIVALENCE THEORY FOR DENSITY ESTIMATION, POISSON 
PROCESSES AND GAUSSIAN WHITE NOISE WITH DRIFT 

BY LAWRENCE D. BROWN,1 ANDREW V. CARTER, MARK G. LOW2 

AND CUN-HUI ZHANG3 

University of Pennsylvania, University of California, Santa Barbara, University 
of Pennsylvania and Rutgers University 

This paper establishes the global asymptotic equivalence between a 
Poisson process with variable intensity and white noise with drift under sharp 
smoothness conditions on the unknown function. This equivalence is also 
extended to density estimation models by Poissonization. The asymptotic 
equivalences are established by constructing explicit equivalence mappings. 
The impact of such asymptotic equivalence results is that an investigation 
in one of these nonparametric models automatically yields asymptotically 
analogous results in the other models. 

1. Introduction. The purpose of this paper is to give an explicit construction 
of global asymptotic equivalence in the sense of Le Cam (1964) between a Poisson 

process with variable intensity and white noise with drift. The construction is 
extended to density estimation models. It yields asymptotic solutions to both 

density estimation and Poisson process problems based on asymptotic solutions 
to white noise with drift problems and vice versa. 

Density estimation model. A random vector V* of length n is observed such 
that V* (V, ..., Vn*) is a sequence of i.i.d. variables with a common density 
f E r- fc?. 

Poisson process. A random vector of random length {N, XN} is observed 
such that N - Nn is a Poisson variable with EN = n and that given N = m, 
XN = Xm - (X, ... , Xm) is a sequence of i.i.d. variables with a common density 
f e F. The resulting observations are then distributed as a Poisson process with 

intensity function nf. 
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White noise. A Gaussian process Z* = Z = {Zn(t), 0 < t < 1} is observed 
such that 

. B*(t) 
(1.1) Zn(t)-- f x d x + 2< t O < l, 

with a standard Brownian motion B*(t) and an unknown probability density 
function f E Y in [0, 1]. 

Asymptotic equivalence. For any two experiments i\ and ~2 with a common 
parameter space 0, A(1, ~2; 0) denotes Le Cam's distance [cf., e.g., Le Cam 
(1986) or Le Cam and Yang (1990)] defined as 

A(~l, ( 2; 0) - sup max supinf sup E?)L(O, (J)) 
- E (k)L(O0, (k)) 

L j=1,2 S8() oS(k Ge 

where (a) the first supremum is taken over all decision problems with loss function 
II L oo < 1, (b) given the decision problem and j = 1,2, k = 3 - j (k = 2 for j = 1 
and k = 1 for j = 2) the "maximin" value of the maximum difference in risks over 
0 is computed over all (randomized) statistical procedures 8( for e and (c) the 

expectations E) are evaluated in experiments ~e with parameter 0, t = j, k. The 
statistical interpretation of the Le Cam distance is as follows: If A(l1, 2; 0) < e, 
then for any decision problem with IILlloo < 1 and any statistical procedure b(i) 
with the experiment ~j, j = 1, 2, there exists a (randomized) procedure 8(k) with 
~k, k = 3 - j, such that the risk of 8(k) evaluated in ~k nearly matches (within 8) 
that of (j) evaluated in yj. 

Two sequences of experiments {ki,n, n > 1} and {R2,n, n > 1}, with a common 

parameter space T, are asymptotically equivalent if 

A (l,n, 2,n; ,) -"-> 0 as n -- oo. 

The interpretation is that the risks of corresponding procedures converge. 
A key result of Le Cam (1964) is that this equivalence of experiments can 

be characterized using random transformations between the probability spaces. 
A random transformation, T(X, U) which maps observations X into the space 
of observations Y (with possible dependence on an independent, uninformative 
random component U) also maps distributions in 1j to approximations of the 
distributions in 2 via P (1T T p(2). For the mapping between the Poisson distributions in1 2 via r 0. 
and Gaussian processes we shall restrict ourselves to transformations T with 
deterministic inverses, T-I(T(X, U)) = X. The experiments are asymptotically 
equivalent if the total-variation distance between p(2) and the distribution of T 
under PM) converges to 0 uniformly in 0. As explained in Brown and Low (1996) 
and Brown, Cai, Low and Zhang (2002), knowing an appropriate T allows explicit 
construction of estimation procedures in 1j by applying statistical procedures from 
~2 to T(X, U). 
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(2) In general, asymptotic equivalence also implies a transformation from the Po 
to the P(l) and the corresponding total-variation distance bound. However, in the 
case of the equivalence between the Poisson process and white noise with drift, by 
requiring that the transformation be invertible, we have saved ourselves a step. The 
transformation in the other direction is T- 1, and 

i||P()T p2) >_ iPpTT_ (2) T-11 = ip- T - (l) _ p(2)T-1 II - 0 0 - III 

Therefore, it is sufficient if supo IIP() T - p( 2)II 0. 
The equivalence mappings Tn constructed in this paper from the sample space 

of the Poisson process to the sample space of the white noise are invertible 
randomized mappings such that 

(1.2) sup Hf (T(N, XN), Zn) - 0 
fE' 

under certain conditions on the family '. Here Hf (Z1, Z2) denotes the Hellinger 
distance of stochastic processes or random vectors Z1 and Z2 living in the same 
sample space, when the true unknown density is f. Since Tn are invertible ran- 
domized mappings, Tn(N, XN) are sufficient statistics for the Poisson processes 
and their inverses Tn-1 are necessarily many-to-one deterministic mappings. Sim- 
ilar considerations apply for the mapping of the density estimation problem to the 
white noise with drift problem, although in that case there are two mappings, one 
from the density estimation to the white noise with drift model and another from 
the white noise with drift model back to the density estimation model. These map- 
pings are given in Section 2. 

There have recently been several papers on the global asymptotic equivalence of 
nonparametric experiments. Brown and Low (1996) established global asymptotic 
equivalence of the white noise problem with unknown drift f to a nonparametric 
regression problem with deterministic design and unknown regression f when 
f belongs to a Lipschitz class with smoothness index a > ?. It has also been 
demonstrated that such nonparametric problems are typically asymptotically 
nonequivalent when the unknown f belongs to larger classes, for example, 
with smoothness index a < ?. Brown and Low (1996) showed the asymptotic 
nonequivalence between the white noise problem and nonparametric regression 
with deterministic design for a < ?, Efromovich and Samarov (1996) showed that 
the asymptotic equivalence may fail when a < 1. Brown and Zhang (1998) showed 
the asymptotic nonequivalence for a < between any pair of the following four 
experiments: white noise, density problem, nonparametric regression with random 
design, and nonparametric regression with deterministic design. In Brown, Cai, 
Low and Zhang (2002) the asymptotic equivalence for nonparametric regression 
with random design was shown under Besov constraints which include Lipschitz 
classes with any smoothness index a > '. Gramma and Nussbaum (1998) solved 
the fixed-design nonparametric regression problem for nonnormal errors. Milstein 
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and Nussbaum (1998) showed that some diffusion problems can be approximated 
by discrete versions that are nonparametric autoregression models, and Golubev 
and Nussbaum (1998) established a discrete Gaussian approximation to the 
problem of estimating the spectral density of a stationary process. 

Most closely related to this paper is the work in Nussbaum (1996) where 
global asymptotic equivalence of the white noise problem to the nonparametric 
density problem with unknown density g = f2/4 is shown. In this paper the 
global asymptotic equivalence was established under the following smoothness 
assumption: f belongs to the Lipschitz classes with smoothness index a > . 

The parameter spaces. The class of functions T will be assumed throughout 
to be densities with respect to Lebesgue measure on [0, 1] that are uniformly 
bounded away from 0. The smoothness conditions on ? can be described in terms 
of Haar basis functions of the densities. Let 

(1.3) k, - k,e(f) J f fke e=0,...,2k-1, k=0, 1,.... 

be the Haar coefficients of f, where 

(1.4) 2k,e ( 2k/2 (1-k+1,2e 
- 

Ik+l,2,+l) 

are the Haar basis functions with Ik,e = [e/2k, (t + 1)/2k). The convergence of the 

Hellinger distance in (1.2) is established via an inequality in Theorem 3 in terms 
of the tails of the Besov norms 11 f 111/2,2,2 and 1I f 111/2,4,4 of the Haar coefficients 

Ok,e = Ok,e(f) in (1.3). 
The Besov norms lf lla,p,q for the Haar coefficients, with smoothness index a 

and shape parameters p and q, are defined by 

1 q oo 2k-1 \/lp q-l/q 

(1.5) ll f Ia p,q= fo + E 2k(a+l/2-l/P) E lok,(fP)l/p - 
- k=O \=O 

Let fk be the piecewise average of f at resolution level k, that is, the piecewise 
constant function defined by 

2k-1 

(1.6) fk= fk(t) l{t E Ik,}2k f. 
e=O 

Since IIfk - fk+1lp = f I e Ok,ek,elP = e lOk,eP2k(pl2-1), (1.5) can be 
written as 

00oo l1/q 

I-f Ila,p,q oq + 
(2kk 

- fk+ll p)q 
k=O 
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and its tail at resolution level ko > 0 is I f - fko lIa,p,q, ko > O, with 

00 r2k-1 \Ilpq 

(1.7) lif- fko I,p,q =E 1 2k(+1/2-1/p)( 0Ik,IP 
k=ko t =1 

Let B(a, p, q) be the Besov space 

B(a, p, q) = {f : f lla,p,q < oo}. 

The following two theorems on the equivalence of white noise with drift, density 
estimation and Poisson estimation models are corollaries of our main result, 
Theorem 3, which bounds the squared Hellinger distance between particular 
invertible randomized mappings of the Poisson process and white noise with drift 
models. The randomized mappings are given in Section 2. Proofs of these theorems 
are given in the Appendix. 

THEOREM 1. Let Z*, {N, XN} and V* be the Gaussian process, Poisson 

process and density estimation experiments, respectively. Suppose that ( is 

compact in both B(1/2, 2, 2) and B(1/2, 4, 4) and that J3 C {f: info<x<l f(x) > 
E0} for some o8 > O. Then 

(1.8) lim A(Z, {N, XN}; Jt) = 0 
n-- oo n 

and 

(1.9) lim A (Zn, V; ) = 0. 
n--. ooc 

Our construction also shows that asymptotic equivalence holds for a class F if 
T is bounded in the Lipschitz norm with smoothness index / and compact in the 
Sobolev norm with smoothness index a > B such that a + > 1, a > or > . 

For 0 < < 1 the Lipschitz norm 1f 11L) and Sobolev norm IIf (S) are defined 

by 

\\f\(L)- If(x)- f(y)I 0 
llfll - sup xI-yl lfll S n2Ic(f)2 

0<x <y 1 Ix - y 
a 

=- 

where Cn(f) = fo f(x)e-in2nx dx are the Fourier coefficients of f. 

THEOREM 2. Let Z*, {N, XN} and V* be the Gaussian process, Poisson 

process and density estimation experiments, respectively, and let Y be bounded 
in the Lipschitz norm with smoothness index ,B and compact in the Sobolev norm 
with smoothness index a > /3. Suppose F c {f :info<x<l f(x) > so} for some 

so > O. Then if a + B > , a > or > , 

lim A(Z*, {N,XN}; ) )=0 
n --- oX 

= 

and 

lim A (Zn, V*; ) = 0. 
n---- o n 
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2. The equivalence mappings. This section describes in detail the mappings 
which provide the asymptotic equivalence claimed in this paper. The fact that 
these mappings yield asymptotic equivalence is a consequence of our major result, 
Theorem 3. The construction is broken into several stages. 

From observations of the white noise (1.1), define random vectors 

(2.1) Zk={Zke, 0< <2 Zk)- Zk 
~ 

[Zk,f, 
0 

k,f 2k 2k 

(2.2) W W e 0 < 2k}, Wk, -Wk,2e+l (Zk,2 - 
k,2 )2 

Let ko = ko,n be suitable integers with limnoo ko,n = oc. Following Brown, 
Cai, Low and Zhang (2002), we construct equivalence mappings by finding the 

counterparts of Zo and Wk, k > ko, with the Poisson process (N, XN), to strongly 
approximate the Gaussian variables. 

It can be easily verified from (1.1) that {Z e 0< et < 2k, W2e, 0 < < 

2k-1, k > ko} are uncorrelated normal random variables with 

k, 
EZk,=hkk ,2kf J h, h _ f, 

(2.3) /Var(Z) = 
vVar(Z=k,) = ak - /2k/(4n), 

for = 0,...,2k - 1, and for t = 0,..., 2k-1 _ 1, 

EW*2 = ,2hk ,2e+1) = v/2k- fh4k-l,e 

(2.4) 
V(Var(Wk,2) = k-l 1 

Let U = Uk,, k > ko, e > 0} be a sequence of i.i.d. uniform variables in 

[-1/2, 1/2) independent of (N, XN). For k = 0, 1, . . . and t = 0, ..., 2k - 1 define 

(2.5) Nk {Nk,, 0 < e < 2k}, Nk, #{Xi: Xi Ik,}. 

We shall approximate Zk in (2.1) in distribution by 

Zk k,, 0 <t <2 }, 
(2.6) 

Zk, = 2aksgn(Nk,e + Uk,e)/lNk, e + Uk,el, 

at the initial resolution level k = ko. Since Nk,f are Poisson variables with 

n fk, t k 
(2.7) Xk,e - ENk,e = -fk. = 4 2, fk,e f, 

2k 4a2' 4o^ 
e 

fk, 

by Taylor expansion and central limit theory 

Zk~, 
( ( , ,/,~ +Nk,e 

- 
k, N 2 

Zk -2rk 2k/+ 1/2 j N( vfk,, o) 
("k,f 
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as -k, -> oc, compared with (2.3). Note that fk, hk,e under suitable 
smoothness conditions on f, in view of (2.3) and (2.7). The Poisson variables Nk,e 
can be fully recovered from Zk,e, while the randomization turns Nk,e into 
continuous variables. 

Approximation of Wk* for k > ko is more delicate, since the central limit theo- 
rem is not sufficiently accurate at high resolution levels. Let Fm be the cumulative 
distribution function of the independent sum of a binomial variable Xm,1/2 with 

parameter (m, ?) and a uniform variable U in [-2, ), 

(2.8) Fm (x)= P{Xm,1/2 + U < x}, 

with Fo being the uniform distribution in [- , ). Let c be the N(0, 1) cumulative 
distribution. We shall approximate W% by using a quantile transformation of 
randomized versions of the Poisson random variables. More specifically, let 

(2.9) Wk {Wk, , O < 2k}, Wk,2e Ok k-l1~ (FNk_l e(Nk,2e + Uk,2e)) 

withWk,2e -Wk,2e+l, t = 0,..., 2k- - 1, and theakin (2.3). Given Nk-l, = m, 

f Ik,2e f fk,2e 
(2.10) Nk,2t - 

Bin(m,p , 2e) Pk,, fk, 
Slk-l,e f fk,2e + fk,2e+1 

so that Wk,2e is distributed exactly according to N(0, 2_l) for Pk,2e = 2 

compared with (2.4). Thus, the distributions of Wk,2e and Wk*,2 are close at high 
resolution levels as long as f is sufficiently smooth, even for small Nk-l,e = m. 

The equivalence mappings Tn, with randomization through U, are defined by 

Tn :N, XN, U} - W[k,oo) - Zn {Zn(t):0 < t < 1}, 

where for ko < k < o0, W[ko,k) = {Zko, Wj, ko < j < k}, and Zk and Wk are as in 

(2.6) and (2.9). The inverse of Tn is a deterministic many-to-one mapping defined 

by 

T ?- Z* W* (N, XN, Tn Z n [ko,o) 
-> (N, XN*) 

where for ko < k oo, Wko, k) k W' ko < j < k}. 

REMARK 1. One need only carry out the above construction to k = k : 2kl > 
en since we shall assume that f E B(1, 2, 2) and then the observations W[ k)- 

{Zk, Wj, ko < j < k and W[kok) {Zko, Wj, ko < j < k} are asymptotically 
sufficient for the Gaussian process and Poisson process experiments. See Brown 
and Low (1996) for a detailed argument in the context of nonparametric regression. 
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Mappings for the density estimation model. The constructive asymptotic 
equivalence between density estimation experiments and Gaussian experiments 
is established by first randomizing the density estimation experiment to an 

approximation of the Poisson process and then applying the randomized mapping 
as given above. Set Yk = supfEe I\f - f1 11 2 2 and note that since J is compact SP fk 1/2,2,2 
in B(1/2, 2, 2), Yk 4 0. Now let ko be the smallest integer such that 4ko /n > Yko and 
divide the unit interval into subintervals of equal length with length equal to 2-k?. 
Let fn be the corresponding histogram estimate based on Vn. Now note that since 
functions f E 3 are bounded below by So > 0 it follows that 

(2.11) j in- f) 2Jo f f)( f =+ Jo fo 

Now 

(2.12) E j f)2E(fn -E fko)2 + (f fko)2 

and simple calculations show that the histogram estimate fn satisfies Efn(x) = 
2ko 

fko(x) and Var fn (x) < fko () . Hence, 

(2.13) nl2E (n- o)2 < nl/2 2y2 0 (fn - fko) < n Y1/2 2ko Jow n1/2 ( 2n 

Now n 1/2< . /2 and hence, from (1.7), 
Yko 

1/2 1(f 2 112 1 
(2.14) n12 l /2 0 1 -fko) < 1/2 If fk0 II 1/2,2,2 

< 
Yko --0. 

Yk0 

It thus follows from (2.11) to (2.14) that 

(2.15) n1/2 sup E ( /n- )2 - 0. 

Hence the density estimate is squared Hellinger consistent at a rate faster than 

square root of n. 
Now generate N, a Poisson random variable with expectation n and indepen- 

dent of Vn. If N > n generate N - n conditionally independent observations 

Vn*+..., V* with common density fn. Finally let (N, XN) = (N, V, V ... 

VN) and write Rn for this randomization from Vn to (N, XN), 

n n fn nnnfx 

A map from the Poisson number of independent observations back to the fixed 
number of observations is obtained similarly. This time let fn be the histogram 

2081 



L. D. BROWN, A. V. CARTER, M. G. LOW AND C.-H. ZHANG 

estimator based on (N, XN). If N < n generate n - N additional conditionally 
independent observations with common density fn. It is also easy to check that 

(2.16) n1/2 sup EJ (/ f )2 -0. 

Now label these observations Vn = (V1..., Vn) and write R2 for this randomiza- 
tion from (N, XN) to Vn, 

R2:(N, XN) Vn. 

REMARK 2. It should also be possible to map the density estimation problem 
directly into an approximation of the white noise with drift model. Dividing the 
interval into 2k0 subintervals and conditioning on the number of observations 

falling in each subinterval, the conditional distribution within each subinterval 
is the same as for the Poisson process. Therefore, it is only necessary to have a 
version of Theorem 4 for a 2k0-dimensional multinomial experiment. 

Carter (2002) provides a transformation from a 2k?-dimensional multinomial 
to a multivariate normal as in Theorem 4 such that the total-variation distance 
between the distributions is O(ko2kOn-1/2). The transformation is similar to ours 
in that it adds uniform noise and then uses the square root as a variance-stabilizing 
transformation. However, the covariance structure of the multinomial complicates 
the issue and necessitates using a multi-resolution structure similar to the one 

applied here to the conditional experiments. The Carter (2002) result can be 
used in place of Theorem 4 to get a slightly weaker bound on the error in the 

approximation in Theorem 3 (because of the extra ko factor) when the total number 
of observations is fixed. This is enough to establish Theorem 2 if the inequalities 
bounding a and / are changed to strictly greater than. It is also enough to establish 
Theorem 1 if X is a Besov space with a > 1. Carter (2000) also showed that 
a somewhat more complicated transformation leads to a deficiency bound on the 
normal approximation to the multinomials without the added ko factor. 

3. Main theorem. The theorems in Section 1 on the equivalence of white 
noise with drift experiments and Poisson process experiments are consequences of 
the following theorem which uniformly bounds the Hellinger distance between the 
randomized mappings described in Section 2. 

THEOREM 3. Suppose info<x<l f(x) > ?o > 0. Let W[kok) = {Zko, ko < 

j < k} with the variables in (2.1) and (2.2), and W[ko,k) {Zko, Wj, ko < j < k} 
with the variables in (2.6) and (2.9). Then there exist universal constants C, 
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D1 and D2 such thatfor all kl > ko, 

H2(Wko,kl), W[ko,kl)) 

C 4ko+ D1 2k-1 0 2k 1 

--+ n2 o k,e + 3 4k 23E k,* eo n 80 k=ko e=o 4O k=ko f=o 

C 4kO D1 D 2D2 n 4 
< --- + - 

2 I -fk0 I 1/2,2,2 + 3ko lf -fko I 1/2,4,4 E o n 8 o3 4k 

where Ok, are the Haar coefficients of f as in (1.3), fk is as in (1.6) and II * 1 1/2,p,p 
are the Besov norms in (1.5). 

REMARK 3. Here the universal constant C is the same as the one in 
Theorem 4, while D1 = 38 + 2 and D2 = D + for the D in Theorem 5. 

The proof of Theorem 3 is based on the inequalities established in Sections 
4 and 5 for the normal approximation of Poisson and Binomial variables. Some 
additional technical lemmas are given in the Appendix. 

Let Xm,p be a Bin(m, p) variable, Xk be a Poisson variable with mean X, and U 

be a uniform variable in [-?, 1) independent of Xm,p and Xx. Define 

(3.1) gm,p(x) d P{-(Fm(X U)) dx 

with the Fm in (2.8) and the N(0, 1) distribution function <c, and define 

d 
(3.2) x (x) - P{2 sgn(Xx + U)/VI Xx + Ui < x}. 

Write pPb for the density of N(b, 1) variables. 

PROOF OF THEOREM 3. Let g[ko,k)(W[ko,k)) and g[ko,k)(W[ko,k)) be the joint 
densities of Wko k) and W[k,k), g(wk) be the joint density of W*, and 

gk(wklw[k0,k)) be the conditional joint density of Wk given W[ko,k). Since Wk 
is independent of W*, [ko,k)' 

g[kok)g[ko,k) ) - g[ko,k+1)g[ko,k+l) = g[o,k)g[ko,k)(1 -k Sgk, 

so that the Hellinger distance can be written as 

Hf (Wko,kl,), W[ko,kl)) 

= 2(1 
- 

Vg[ko k )g[ko,k) ) 

(3.3) = 2( - 
Jg[koko+l)g[koko+l, ) 
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+ E 2f/ gg[,k)g[ko,k)(1 f ) 
ko<k<kl 

- H(Z -ko, Zko) + L I Vg[ko,k)g[ko,k)H (gk, gk). 
ko <k<kl 

At the initial resolution level ko, Nko,e are independent Poisson variables 

by (2.5), so that Zko,e are independent. This and the independence of Zko,e 
from (2.1) imply 

2k - 1 

H(Zko Zko) < E Hf(Z4, Zko,e). 
e=0 

By (2.6) and (3.2) Zko,e/urko have densities gxk,,, while Zko,e/ako are N(hko,e/ 

ako, 1) variables by (2.3). Thus, Theorem 4 can be used to obtain 

Hf Zko,e, Zko,e) = Hf (gxkoe , hko,e/ako) 
< - 2 /ko f - Xko,e (2 2 

Since Xk,e = fk,e/(4k2) by (2.7) and a 2 - 2k-2/n by (2.3), the above calculation 
yields 

2k%-1 2ko 2ko -1 2n 
Hf (Zko Zko) < C nfko, + 2ko 

j hk?e) 

(3.4) 

< C-+ 2 1 n2ko [ (f fk) < C-+ - 
=80 o2,3 

by Lemma 1(i) and the bound f > 8o. 
For k > ko and 0 < t < 2k-1 - 1, define 

(3.5) 4Lk,2e -mk,2e(2pk,2e - 1), 8k,2e X/k-1,e(2pk,2e - 1), 

where Pk,2e are as in (2.10), Xk,e = fk,en/2k are as in (2.7), and the functions 
mk,2 -mk,2e(w[ko,k)) are defined by Nk-l,e = mk,2e(W[ko,k)). At a fixed reso- 
lution level k > ko, and for =0, ..., 2k- 1 _ 1, Nk,2e are independent binomial 
variables conditionally on W[ko,k), so that by (2.9) and (3.1) Wk,2e/ck-1 are in- 
dependent variables with densities gmk,2-,Pk,2e under the conditional density gk. In 

addition, Wk*2e are independent normal variables with variance a 2 under g*. 
Thus, 

2k-l_l 

(3.6) H2(g* gk) < H2(gmk2t,pk2e,(P/2X9 
-=0 
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Inserting (3.9) and (3.10) into (3.8) and summing over g via (3.6), we find 

/Vg[ko, k)g[ko,k)H (gk, gk) 

2k-1_1 

f Z /g[ ok)gko ,k)H2(gmk,2e,Pk,2e' 5pk,2e) 
e=0 

2k-l1- 2k02 4k 4 

(3.11) < y 4D k 1, + Dk-D f kA f, 8 ,2 e64 f4 
=0 - fJk-le Jk-l, 

n2k 2- 

+ 
2f3f ( 

- 
fk-1,E) ) 

2k-1- i- ki f 2- 
< 1 2 ik-, e + (1 + 1)n2 (f fk-l,e) , 

f=O 3 -,e - 

due to .k,e = nfk,e/2k in (2.7) and 02e < fIk - fk,)2. 

Finally, inserting (3.4) and (3.11) into (3.3) and then using Lemma 2 yields 

Hf (Wko,kl+l), W[ko,kl+l)) 

22ko D1 
kl -2 2kl-1 

<2 k 2k 1 02k 

nEo O k=ko L=0 

with D2 = (6 + j)/(1 - ) = D + 8 and the theorem follows. D 

4. Approximation of Poisson variables. Let Xx be a Poisson random 

(4.1) Zx = 2 sgn(Xx + U)v x + U\, g(y) P{Z 4k}. 

The main result of this section is a local limit theorem which bounds the squared 
Hellinger distance between this transformed Poisson random variable and a normal 

ra and m variable. random variable. 
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THEOREM 4. Let Zx and gX be as in (4.1). Let Z* - N(2V/~, 1) and qo, be 
the density of N(0, iu). Let H(., ) be the Hellinger distance. Then, as X -x oo, 

(4.2) H2(Zx, Z*) = H2(g;, q2y) = (7 + o(1)) 96. 

Consequently, there exists a universal constant C < oo such that 

(4.3) H2(g;, (PzL) < C/A + (2x/ - /)2/2 V? > 0, /i. 

REMARK 4. The theorem remains valid if Zk is replaced by 

ZAx-2 Xx +U + 2, 

since H2(Zx, Z;) is bounded by 

2- 21/ Vfx+ fx++l/2 < 2- I + ?e e- K! 

- 1-E < smin 1, ) 

PROOF OF THEOREM 4. The second inequality of (4.3) follows immediately 
from (4.2), since H2(o%1, q(2) = (/i1 - A2)2/4 [cf. Brown, Cai, Low and Zhang 
(2002), Lemma 3] and H2(gi, q/O) < 2. 

Let t(x) = 2 sgn(x) >IJT, a strictly increasing function. Define 

(4.4) = t-1 (Z;) = sgn(Z*)(Z)2/4 

Let fx and f;* denote the densities of X; + U and X*, respectively. Since t(-) is 

invertible, H2(ZZ, Z;) = H(UX + U, XX) -= 2- 2f /v fx, so that it suffices to 
show 

(4.5) A VA/fxf = 1 - , C = i A;~~~ ~ - /;f+-lm Cxi192. 

Since U is uniform, f (x) = e-XXJ/j! on [j - 1/2, j + 1/2), so that 

00 jj+1/2 
(4.6) A), = fx(j) {f (x)/Afx()}1l/2dx. 

j=0 -l/2 

Since t'(x) = IxI-1/2, by (4.4) fx*(x) = Ixl-1/2o(t(x) - 2v/). This gives 

f*(x) exp{-(2/-2/)2/2} exp[2r/(x)], j -< < j 1 

fx(j) /27rxe- XJ/j! 
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for j > 1, in view of the Stirling formula j! = j-2-jj+l/2 exp(-j + Ej), where 

(4.7) j(x)=(?- /)2_ x X+logx j logj _ ?j 4 
4 +2 2 _ 4 2 2 

with 1/(12j + 1) < ej < 1/(12j), for j = 1,2,.... Now, by the mean-value 
theorem, 

j+-1/2 { f*(x) 1/2 
j- 

7+2 
fx(j) 

= j exp rj(j) + lj(j)(x - j) + 2 (x-j)2 dx 
Jj-1/2 - 2 

for some Ixj - jl < , with 

(4.8) V (x) = -1 - 4 V (X= - 1 + 4 ' 
V x 4x ' 2x3/2 4x2 

Since exp[j (j) + Vf"(xj)(x - j)2/2] is symmetric about j, it follows that 

[j+1/2 d 
j1/2 fx() 

dx 

(4.9) 1+1/2 - I(Xj)X_)2 X j)) 
-= exp fj (j)+ dx. 

-1/2 2 k=O (2k)! 

Now, we shall take uniform Taylor expansions of 4rj and their derivatives in 

Jx-{ :l{'[/3.- 1 <X-2/5}. 
By (4.7), Vrj(j) = X/(j/X) + Fj/2 with 

(X _(, _ 1-x + x 
+(x)=-(x/T- 1)2+ 2 +-logx. 2 2 

Since Vf(1) = p'(1) = r"(1) = 0, "'"(1) = 1/4 and f""(1) = -7 

X( - 4 3!X3 8 4!X4 (1o(1))=o(1). 

Since 1/(12j + 1) < ?j < 1/(12j), ?j/2 = (1 + o(1))/(24X) = o(l). Thus, 

(j - X)3 7 (j - X)4 + o(l) 
~j (j) = (1 + o(1))? = o(l) 24X2 8 24,3 24X =(1) 

uniformly in Jx as X -- oo. Similarly, by (4.8) and Ixj - j I < 

{( )}2= (1 o())( + 3)2 o (1), 

( =-1+ o() ). 
(xj) 2 = o(X). 

J 23L~2, 
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These expansions and (4.9) imply that uniformly in JA, 

-1i/ f()/2 
Jj-l/2 fA(j) 

= Jj+l/2 
-1 - ?rj(j (xj) + (*r (j) )2} (x dx 

Jj-1/2 2 _ 

Xk+l 
k=O 

(j- )3 7 (j - X)4 1 1 ---1 (j )2- 
=1+ 24X2-- + 

? 24X2 8 243 243 2X 4X2 

2 (jX) 2k 

+o(1)L o Xk+1 
k=O 

as Jj-/2 (x - j)2 dx = .' Since fx(j) is the Poisson probability mass function 

of Xx, 

f* 
(j) dx 

j6jE x j-+/2 fA (j) 

(4.10) 1 -7- 3 1 1 o(1) 7+o(1) 
=1 -- ? ? =1 

24_ 8 2424 24X 96X X 192X 

as EjeA fx(j) = 1 + o(1/A). Note that E(Xx - X)3 = X and E(Xx -)4 = 

3X2 + X. Hence, (4.5) follows from (4.6), (4.10) and the fact that 

+1/2 f 1//1\ 

Lr JJjl-1/2 fk J(j) l;J. () 

5. Approximation of binomial variables. The strong approximation of a 
normal by a binomial depends on the cumulative distribution function Fm in (2.8). 
The addition of the independent uniform U in (2.8) to the binomial Xm,1/2 makes 
the c.d.f. continuous and thus >-1 o Fm is a one-to-one function on (-, m + r ) 
that maps symmetric binomials to standard normals. 

Let qOb be the N(b, 1) density and gm,p be the probability density of 

(5.1) >-' (Fm[Xmp + U]), Xm,p Bin(m, p), 

as in (3.1), where U is an independent uniform on [-, ? ). 

THEOREM 5. There is a constant C1 > 0 such that, for all m > O, 

(5.2) H2 p,b) f (g m,,Pb)m )2dz < C (-+ 2) 1~-~2dZi1rn mi 

2089 
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where b = (/-m/2) log(p/(l - p)). Consequently, 

(5.3) H2(gm,p, tp) < D p- +m p-) + 

PROOF. The case when m = 0 is trivial because X = 0 with probability 1 and 
therefore go,p is exactly an N (0, 1). Thus, the following assumes that m > 1. 

It follows from (3.1) that 

(5.4) m,p(Z)= p (1 - p)m-j2mo(), 

where j = j (z) is the integer between 0 and m such that 

(5.5) (D-l[Fm(j - 1)] < z < D-l[Fm(j + 1)]. 

Let 0 = log(p/q) so that 

g gm,p(z) (j m) mlog(4pq) 

o(z) 2 + 2 
and the second term can be approximated by 

02 04 -2 + e? + e-0 2 04 
(5.6) - 24 - < log(4pq)= - log < 4- + (4 24 

- 
4 4 32 

Let h1(0) = (2 + e-H + e-0)/4. The second inequality in (5.6) follows from 

log(hl(0)) > log(l + 02/4) > 02/4 - 04/32. The first inequality in (5.6) follows 
from h1(0) < 1 + 02/4 + 04/24 for 101 < 4, and from log(h1(0)) < 101 < 02/4 for 
101 > 4. Now, let 

(5.7) z = z(z) j(z m/2 and b =0 
-m/2 2 

Then for some -1/24 < h2(0) < 1/32 the log ratio is 

m,p (Z) b2 
log m,( = zb - - + h2(O)m04. 

(Po(z) 2 

The log ratio of normals with different means is log ((00/0b) =-zb + b2/2. 
Therefore the ratio with respect to the normal with mean b is 

(5.8) log gm,p = h2(0)m04 - b(z - z'), Ih2(0)I < 
b24 

Since y log(x/y) < x - y < x log(x/y), for all positive x and y, 

1 p- ) ' a - 1 (Pb (P b 
Vm log I- -m,p )<i m,- m,P -V logI -j 2 ' m9p 2 gm,p 
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so that by (5.8), 

H2(gp,m, Ob) < 
\ \ log (- (b + gm,p) 

dz -- 
" I 8gm,p )dZ 

(5.9)04 2 b 
< 124 I 

+- 
T (z-Z)2((Ob +- gm,p)dz. 

It follows from Carter and Pollard (2004) that the difference between z and 
z' = z'(z) is bounded by 

(5.10) z'I < C2(m-l/2+ m-l 1z3), for all z, 

C2(m-1/2 + m-1l'13), if IzI | /2-, 

for some constant C2. Thus, 

(5.11) J(z- )2m p dz < 2C22(1 + Iz 16 
pdz pdZ) 

J \m J w2 
9 dz 

2>2m M2 
& 

/ 
d 

Since f gm, p I {z = (j - m/2) /Him}dz = P Xm,p = j}, 

J I16m,p dz = E 
x 

P / 
- m2 

np( )- )) = (l+ b6 

uniformly in (m, p). It follows from (5.4) that 

I2>2 z6m,pdz <i 2m Z 6odz = 0(2mm6e-) = O(m-1) 
Jz2>2m 2 z>2m 

The above two inequalities and (5.11) imply 

(Z - Z)2m,p dz < 2C22 0(l/m + b6/m 2). 

Similarly, f(z - z')2b dz < 2C220(1/m + b6/m2). Inserting these two inequali- 
ties into (5.9) yields (5.2) in view of (5.7). 

Now let us prove (5.3). The Hellinger distance is bounded by 2, so that b8/m2 
in (5.2) can be replaced by b4/m and it suffices to consider Ip - 1I <I for the 
proof of (5.3). By inspecting the infinite series expansion of log(P) = log(l + x) - 

log(l -x) forx =2p - 1, we find that for Ip - 'I , I log()l I< I82p - 1I and 

I log(P) - 4(p - )< 12p - 113. These inequalities, respectively, imply 

b2 b4 16 256 - + - -(2p - 1)2 + 6m(2p - 1)4 
m 2 g-9 81 

and lb - /m(2p - 1)12 < m 2p- 116 < 4m 2p - 114, in view of the definition 

of b, which then imply (5.3) via (5.2) and the fact that H2 (pb - pf) = (b - 5)2/4. 

Now let us prove (5.3). Te Hellinger distance is bunded by 2, so that bS/m 
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APPENDIX 

A.1. The Tusnady inequality. The coupling of symmetric binomials and nor- 
mals maps the integers j onto intervals [fBj, 3j+l] such that the normal(m/2, m/4) 
probability in the interval is equal to the binomial probability at (')2-j. Taking the 
standardized values 

2(fBj - m/2) 2(j - 1/2 - m/2) 
Zj= - m 

' uj- = 

Carter and Pollard (2004) showed that for m/2 < j < m and certain universal finite 
constants C? 

uc j +1< 
l 

) '^og - u /m) j + log m C- < zj 
- 

uj 1+2 y - < C+ m 
- 

\ m 2cuj m 

where c = V/2 log 2 and y is an increasing function with y (0) = 1/ 12 and y (1) = 

log 2- 1/2. 
This immediately implies that 

C0 uj 1 
(A.1) Izj - ujl < (luj3 +1ogm) V-I < - 

m m-2 

for a certain universal constant Co < oo. We shall prove (5.10) here based on (A. 1). 
Because of the symmetry in both distributions, it is only necessary to consider 
z >0. 

It follows from (5.5) and (5.7) that 

Zj z< Z < Zj+1 Uj < = Z='(Z) < Uj+l. 

Let zj < z < zj+i. Since uj+l - uj = 2//m, for u2 < m/2 (A.1) implies 

(A.2) Iz - z'l l Izj - ujl v lz j+1 - u j+l I < C0 i O 

+ 

Since uj and zj are both increasing in j, it follows that (z A z')/vI/ are uniformly 
bounded away from zero for uj+l > /m-/2, so that 

(A.3) 
2 Iz13AI IZ'3 

(A.3) Iz - z'l Izj - ujl v 
Izj+i - uj+l + <C 3 A l z 

for (m + 1)/m- = um+l > uj+l > m/2 and z < /2m. Since z v z' < z v Um+l < 

2/z for z > /2m, (A.2) and (A.3) imply 

I z-z < C2(m-1/2 + m-11z3), for all z, 

C2(m-1/2 + m-l z'13), if IzI < /21m, 

for a certain universal C2 < oo, that is, (5.10). 
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A.2. Technical lemmas. The following three lemmas simplify the rest of the 
proof of Theorem 3. 

LEMMA 1. (i) Let fk,e and hk,e be as in (2.7) and (2.3). Then 

(A.4) 0 < fk,~ - hk,e 2- fk,/2 (f - f)2. 

(ii) Let Ok,e be the Haar coefficients of f as in (1.3). Then 

(A.5) f hk, - - <- 2 /2 2 ( f-f k,e)2. 
*/ 1^" Jk,i' Z ~ (f- fk, )2' 

PROOF. Let T = (f - fk,e)/fk,e > -1. By algebra, 

T T T2 

1 l+I+ T 2 2(1+ 1/ +T)2 

It follows from (2.3) and (2.7) that 

hk, =2k f-, f,1 + T 

k /7- f /1 f - 
fk,f (f - fk,*2 ) ^ 

(2 f fk,e Ik 2 ? fk fe( + 2 /1 + T)2) 

which implies (A.4) as 2k fIk, = 1 and by (2.7) fIk,(f - fk,e) = 0. For (ii) we 
have 

ht (k = f, f k,tVl + T 

hfk,fPk l+f - fk, (f - fi 2 ) 
= k k + 

2fk,e 2fk,e(1 + /1 + T)2 

which implies (A.5) as f qk,e = 0 and I|k,eI < 2 by (1.4). LI 

LEMMA 2. Let Ok, be the Haar coefficients in (1.3) and fk,e be as in (2.7). 
Then 

co 2k-1 2 2-cko oo 2k-1 

E Ek ): 
(b,(f ? (eI) - (1-1/2C)2 

E k,e E 
2k 

E (f</ - 
1,2c)2 \3 2k(1?c) I < v > 0. 

k=ko e=o k=ko e=0o 

PROOF. Define 

1, if Ii,j Ik, 
0,i,j,k, otherwise. 
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A.3. Proof of Theorem 1. First note that 

H(TnRnVn, Z*) < H(TnRlVn, Tn(N, XN)) + H(Tn(N, XN), Zn) 

and 

H(Vn, RTn Zn) < H(V, R2(N, XN)) + H(R2(N, XN), Tn 1Zn)) 

Note also that since for any randomization T and random X and Y, H(TX, TY) < 

H(X, Y), it follows that 

H(TnRnVn, Tn(N, XN)) < H(R1V*, (N, XN)) 

and 

2 2 < , Zn) H(Tn (N, XN), Zn). H(R2(N, XN), RnTnZn) < H((N, XN), T = H(Tn(N X), Z) 

For the class Ie and the randomizations R1 and R2 it follows from (2.15), (2.16) 
and the proof of Proposition 3 on page 508 of Le Cam (1986) that 

sup H(RlV;, (N, XN)) 0 
fJf3 

and 

sup H(V(, R2(N, XN)) - 0. 
fce 

Hence (1.9) and (1.8) will follow once 

(A.6) sup H(Tn(N, XN), Zn) - 0 
feJe 

is established. 

By Theorem 3, for (A.6) to hold it is sufficient to show that 

sup/4o+f - f12 n - 4 
sup 

( 
-+ 1 - fko 

I ? 
1/2,2,2 + 4ko I 

- fko )1 1/2,4,4 

If the class of functions J is a compact set in the Besov spaces, then the partial 
sums converge uniformly to 0, 

sup |If - fk ll/2,p,p- 0 
fEJe 

for p = 2 or 4 as k -o oc. This implies that there is a sequence Yk -- 0 such that 

Yk supf ej 1f - fk 114/2,4,4 - 0. To be specific, let 

Yk= sup lIf-fkIll/2,4,4' 
fEe 
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It is necessary to choose the sequence of integers ko(n) that will be the critical 
dimension that divides the two techniques. Let ko be the smallest integer such that 
4 > Yko. Therefore, ko(n) -> oo, and as n -> oo, 

ssup (- 
+ II -fko 2,2,2 f ko 11 1/2,4,4 

< ~~fSUkp +11 11/2,2,2 + IIf - fko 11 1/2,4,4 
f EJ3e (, 

I f I 
Yko 

A.4. Proof of Theorem 2. Theorem 2 follows from Theorem 1 and the fact 
that the Lipschitz and Sobolev spaces described are compact in the Besov spaces. 

The Lipschitz class is equivalent to $,,, and therefore is compact in 

21/2,p,p if / > 2. The Sobolev class is equivalent to 2a,2,2 and 

I fk0 a,2,2 < Ca E ICn(f)12n2a, 
n 

where C, depends only on a. Thus if T is compact in Sobolev(a) for a > I then 
it is compact in $1/2,2,2. 

Further restrictions are required to show that the Sobolev(a) class is compact in 

$1/2,4,4. If l f )i_ < C(L), then IIf - fk+ Iloo < C(L)2-k, so that 

00 

f - fko l/2,44 - C(L) 221 ) Ifk - fk+l I dx 

k=ko 

= C(L)f 
- 

fko 1 (1-),2,2' 

Therefore, for ! bounded in Lipschitz(,), a compact Sobolev(a) set is also 

compact in S31/2,4,4 if a > 1 - B. 
Finally, if 

' 
is compact in Sobolev(a), a > 3/4, then it immediately 

follows from the Sobolev embedding theorem that the function is bounded in 

Lipschitz(1/4) [e.g., Folland (1984), pages 270 and 273], and it follows that 7' 
is compact in <1/2,4,4. ] 
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