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EQUIVALENCE THEORY FOR DENSITY ESTIMATION, POISSON
PROCESSES AND GAUSSIAN WHITE NOISE WITH DRIFT

BY LAWRENCE D. BROWN,! ANDREW V. CARTER, MARK G. Low?
AND CUN-HUI ZHANG?

University of Pennsylvania, University of California, Santa Barbara, University
of Pennsylvania and Rutgers University

This paper establishes the global asymptotic equivalence between a
Poisson process with variable intensity and white noise with drift under sharp
smoothness conditions on the unknown function. This equivalence is also
extended to density estimation models by Poissonization. The asymptotic
equivalences are established by constructing explicit equivalence mappings.
The impact of such asymptotic equivalence results is that an investigation
in one of these nonparametric models automatically yields asymptotically
analogous results in the other models.

1. Introduction. The purpose of this paper is to give an explicit construction
of global asymptotic equivalence in the sense of Le Cam (1964) between a Poisson
process with variable intensity and white noise with drift. The construction is
extended to density estimation models. It yields asymptotic solutions to both
density estimation and Poisson process problems based on asymptotic solutions
to white noise with drift problems and vice versa.

Density estimation model. A random vector V, of length n is observed such
that V;, = (V}, ..., V) is a sequence of i.i.d. variables with a common density
fexF.

Poisson process. A random vector of random length {N, Xy} is observed
such that N = N,, is a Poisson variable with EN = n and that given N = m,
Xy =X = (X1,..., X;) is a sequence of i.i.d. variables with a common density
f € F. The resulting observations are then distributed as a Poisson process with
intensity function nf.
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White noise. A Gaussian process Z* = Z» = {Z(¢),0 <t < 1} is observed
such that

(1.1) Z,’;(t)z/ot\/f(x)dx-f-g\g_l), 0<r<l1,

with a standard Brownian motion B*(¢) and an unknown probability density
function f € # in [0, 1].

Asymptotic equivalence. For any two experiments &; and & with a common
parameter space ©, A(§1, &; ©) denotes Le Cam’s distance [cf., e.g., Le Cam
(1986) or Le Cam and Yang (1990)] defined as

A, 6;0)= sup max supmfsup IE(])L(Q, 8U) — E(gk)L(O, 6("))[,
=12 50) 8® ge®

where (a) the first supremum is taken over all decision problems with loss function
ILlloo <1, (b) given the decision problemand j =1,2,k=3—j(k=2forj=1
and k = 1 for j = 2) the “maximin” value of the maximum difference in risks over
® is computed over all (randomized) statistical procedures 8O for & and (c) the
expectations E gf) are evaluated in experiments &, with parameter 6, £ = j, k. The
statistical interpretation of the Le Cam distance is as follows: If A(§1, &;0) <&,
then for any decision problem with ||L s < 1 and any statistical procedure 8¢/
with the experiment &, j = 1, 2, there exists a (randomized) procedure § ®) with
&, k =3 — j, such that the risk of § *®) evaluated in &, nearly matches (within ¢)
that of §(/) evaluated in & -

Two sequences of experiments {&1 ,, n > 1} and {&; ,, n > 1}, with a common
parameter space ¥, are asymptotically equivalent if

A1, 520 F)—0 as n — 00.

The interpretation is that the risks of corresponding procedures converge.

A key result of Le Cam (1964) is that this equivalence of experiments can
be characterized using random transformations between the probability spaces.
A random transformation, 7(X, U) which maps observations X into the space
of observations Y (with possible dependence on an independent, uninformative
random component U) also maps distributions in &; to approximations of the
distributions in & via Pél)T ~ Péz). For the mapping between the Poisson
and Gaussian processes we shall restrict ourselves to transformations 7' with
deterministic inverses, T ~!(T (X, U)) = X. The experiments are asymptotically
equ1va1ent if the total-variation distance between P(Z) and the distribution of T

under P converges to 0 uniformly in 6. As explained in Brown and Low (1996)
and Brown, Cai, Low and Zhang (2002), knowing an appropriate 7' allows explicit
construction of estimation procedures in &; by applying statistical procedures from
&toT(X,U).
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In general, asymptotic equivalence also implies a transformation from the Péz)

to the P((,l) and the corresponding total-variation distance bound. However, in the
case of the equivalence between the Poisson process and white noise with drift, by
requiring that the transformation be invertible, we have saved ourselves a step. The
transformation in the other direction is 7!, and

[POT — | = [ TT - P T = [~ BT,

Therefore, it is sufficient if sup, ||P§1)T - Péz) I — 0.

The equivalence mappings 7, constructed in this paper from the sample space
of the Poisson process to the sample space of the white noise are invertible
randomized mappings such that

(1.2) sup H¢(T,(N,Xy), Z;) - 0
feF

under certain conditions on the family ¥ . Here Hy(Z1, Z3) denotes the Hellinger
distance of stochastic processes or random vectors Z; and Z, living in the same
sample space, when the true unknown density is f. Since 7T, are invertible ran-
domized mappings, 7, (N, Xy) are sufficient statistics for the Poisson processes
and their inverses 7, ! are necessarily many-to-one deterministic mappings. Sim-
ilar considerations apply for the mapping of the density estimation problem to the
white noise with drift problem, although in that case there are two mappings, one
from the density estimation to the white noise with drift model and another from
the white noise with drift model back to the density estimation model. These map-
pings are given in Section 2.

There have recently been several papers on the global asymptotic equivalence of
nonparametric experiments. Brown and Low (1996) established global asymptotic
equivalence of the white noise problem with unknown drift f to a nonparametric
regression problem with deterministic design and unknown regression f when
f belongs to a Lipschitz class with smoothness index o > % It has also been
demonstrated that such nonparametric problems are typically asymptotically
nonequivalent when the unknown f belongs to larger classes, for example,
with smoothness index o < % Brown and Low (1996) showed the asymptotic
nonequivalence between the white noise problem and nonparametric regression
with deterministic design for o < %, Efromovich and Samarov (1996) showed that

the asymptotic equivalence may fail when o < %. Brown and Zhang (1998) showed

the asymptotic nonequivalence for o < % between any pair of the following four
experiments: white noise, density problem, nonparametric regression with random
design, and nonparametric regression with deterministic design. In Brown, Cai,
Low and Zhang (2002) the asymptotic equivalence for nonparametric regression
with random design was shown under Besov constraints which include Lipschitz
classes with any smoothness index « > % Gramma and Nussbaum (1998) solved
the fixed-design nonparametric regression problem for nonnormal errors. Milstein
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and Nussbaum (1998) showed that some diffusion problems can be approximated
by discrete versions that are nonparametric autoregression models, and Golubev
and Nussbaum (1998) established a discrete Gaussian approximation to the
problem of estimating the spectral density of a stationary process.

Most closely related to this paper is the work in Nussbaum (1996) where
global asymptotic equivalence of the white noise problem to the nonparametric
density problem with unknown density g = f2/4 is shown. In this paper the
global asymptotic equivalence was established under the following smoothness
assumption: f belongs to the Lipschitz classes with smoothness index o > %

The parameter spaces. The class of functions & will be assumed throughout
to be densities with respect to Lebesgue measure on [0, 1] that are uniformly
bounded away from 0. The smoothness conditions on ¥ can be described in terms
of Haar basis functions of the densities. Let

(1.3) Okygsek,g(f)szfl’k,e, £=0,...,2~1, k=0,1,...,
be the Haar coefficients of f, where

(1.4) ke = 2k/2(11k+1,21 - ]]'Ik+1,2£+l)

are the Haar basis functions with Iy o = [£/ 2k (e+1) / 2%). The convergence of the
Hellinger distance in (1.2) is established via an inequality in Theorem 3 in terms
of the tails of the Besov norms || fl1/2,2,2 and || f[l1/2,4,4 of the Haar coefficients

Ok,0 = O,e(f) in (1.3).
The Besov norms || f ||e, p,q for the Haar coefficients, with smoothness index o
and shape parameters p and g, are defined by

1 g 2k-1 1/pyqq1/q
(1.5) ||f||a,p,qEU /0 f’ +Z=2"<"‘+‘/2—1/1’>(Z|9k,e(f)|P> H :
k=0

=0

Let fi be the piecewise average of f at resolution level k, that is, the piecewise
constant function defined by

2k
(1.6) fe= =Y 1t € I )2 S
kL

=0

Since ||fi — firillh = [1 50 0ketn.el? = Yp 10kl 2KP/27D ] (1.5) can be
written as

00 1/q
e = {lfolq 3@ f - ﬁ+1||p>q} |

k=0
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and its tail at resolution level kg > 0'is || f — fi, llo p.g» ko > 0, with

) 2k—1 1/pyq
A N = fold,, = Z[2k(a+1/2—1/p)(2|6’k,£|p) }

k=ko £=1
Let B(a, p, q) be the Besov space

B(a,p,q)=1{f": ”f”a,p,q < 00}.

The following two theorems on the equivalence of white noise with drift, density
estimation and Poisson estimation models are corollaries of our main result,
Theorem 3, which bounds the squared Hellinger distance between particular
invertible randomized mappings of the Poisson process and white noise with drift
models. The randomized mappings are given in Section 2. Proofs of these theorems
are given in the Appendix.

THEOREM 1. Let Z;, {N,Xn} and V; be the Gaussian process, Poisson
process and density estimation experiments, respectively. Suppose that H is
compact in both B(1/2,2,2) and B(1/2,4,4) and that 3 C { f :info_, <1 f(x) >
&o} for some g9 > 0. Then

(1.8) lim A(Z;,{N,Xy}; #)=0
n—>o0

and

(1.9) hm AZ;,Vy,; H)=0.

Our construction also shows that asymptotic equivalence holds for a class ¥ if
F is bounded in the Lipschitz norm with smoothness index 8 and compact in the
Sobolev norm with smoothness index a > ,B suchthata + 8> 1, « >3 Fo0rB> 2

For 0 < 8 < 1 the Lipschitz norm || f || 8 ) and Sobolev norm If IIO, are defined
by

W@ =Ty 9 = 5 221, ()12,

0<x<y<l lx — lﬂ n=—00

L
L1 =

where ¢, (f) = fol f(x)e~i"27x gx are the Fourier coefficients of f.

THEOREM 2. Let Z;, {N,Xy} and V), be the Gaussian process, Poisson
process and density estimation experiments, respectively, and let ¥ be bounded
in the Lipschitz norm with smoothness index 8 and compact in the Sobolev norm
with smoothness index a > B. Suppose F C {f :infox<1 f(x) > &} for some
go > 0. Thenifa+ﬂ_>_1,cx2%or,8> 2

Jim A(Z;, N, Xy} #) =0
and
hm A(Z,,V;; F)=0.
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2. The equivalence mappings. This section describes in detail the mappings
which provide the asymptotic equivalence claimed in this paper. The fact that
these mappings yield asymptotic equivalence is a consequence of our major result,
Theorem 3. The construction is broken into several stages.

From observations of the white noise (1.1), define random vectors

. £+1 L

— (7 k F* Ak} o *

22) Wi={(W;, 0<t<24, Wi e =—Wi a1 = Zi 2o = Zi e 1)/2-
Let ko = ko, be suitable integers with lim,_, ko, = 00. Following Brown,
Cai, Low and Zhang (2002), we construct equivalence mappings by finding the
counterparts of Z*ko and W7, k > ko, with the Poisson process (N, Xy), to strongly

approximate the Gaussian variables.
It can be easily verified from (1.1) that {7,:0’@,0 < ¢ < 2ko, W,:’M,O </{ <

2k=1 k > ko} are uncorrelated normal random variables with

EZy,=he=2"| h,  h=J/f,

Ii.e

VVar(Zy ) = o = V25 (4n),

for£=0,...,2x —1,andfor £=0,...,2kx"1 — 1,

(2.3)

EW} 5 = 3 (hi2e — hipeq1) = V2K / hék—1,,
vV Var(Wy 5,) = 0x—1.

Let U= {ﬁk,g,k > ko, £ > 0} be a sequence of i.i.d. uniform variables in
[—1/2,1/2) independentof (N, Xy).Fork=0,1,...and£ =0, ..., 2% — 1 define

(2.5) Ne={Nep,0<l <25, Neo=#X;:X; €lpy).

(2.4)

We shall approximate Tk in (2.1) in distribution by

Zi={Zp,0<t <25},
2.6) - N _
Zi o =2015g0 (Ng ¢ + U o)V |Ni g + Uk gl

at the initial resolution level k = ko. Since Ni ¢ are Poisson variables with

S

n
2.7 k.l ke =g Jit s

fe=25 f,
Iie
by Taylor expansion and central limit theory

= Ni,e = Ao
Zi ~ 20, (v A + —1) ~ N(V St 07)

2
2A )
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as Akg — oo, compared with (2.3). Note that ,/fi ¢ =~ hi¢ under suitable
smoothness conditions on f, in view of (2.3) and (2.7). The Poisson variables Ny ¢
can be fully recovered from Zc, ¢, while the randomization turns N into
continuous variables.

Approximation of Wy, for k > ko is more delicate, since the central limit theo-
rem is not sufficiently accurate at high resolution levels. Let F;, be the cuamulative
distribution function of the independent sum of a binomial variable )?m,l /2 with

parameter (m, %) and a uniform variable U in [—%, %),
(2.8) Fu(x)= P{Xpm12+U <x},

with F being the uniform distribution in [— % , %). Let @ be the N (0, 1) cumulative
distribution. We shall approximate W} by using a quantile transformation of
randomized versions of the Poisson random variables. More specifically, let

(2.9) Wi={W;,0<¢<2%), Wi2e = 0k—197 " (F,_, ,(Ni2e + Uk 20))
withWy 20 = — Wy 2041, £ =0, ...,2¥"1 —1, and theoyin (2.3). Given Ny_; ¢ = m,

Dot = flk,ze f Jr.2e
20 = = )
Jiio o feae+ froen

(2.10)  Ng2¢ ~ Bin(m, p 2¢),

so that Wy o, is distributed exactly according to N (O, o,f_ D for prae = %,

compared with (2.4). Thus, the distributions of Wy 2, and WI:,ZZ are close at high

resolution levels as long as f is sufficiently smooth, even for small Ny_1 ¢ =m.
The equivalence mappings 7,,, with randomization through U, are defined by

Tp: AN, XN, U} = Wiig.00) = Zn = {Zn(£):0 <t <1},

where for ko < k < 00, Wik, k) = {Zk,, W, ko < j <k}, and Zy and W are as in
(2.6) and (2.9). The inverse of T, is a deterministic many-to-one mapping defined
by

T, 7" > Wiko.00) = (N*, XR4),

where for ko < k < 00, Wy ) = {Z*ko,w;, ko < j <k}.

REMARK 1. One need only carry out the above construction to k = ky : 2¥1 >
en since we shall assume that f € B(%, 2, 2) and then the observations Wfko, 0=
{Z:O, Wi, ko < j <k} and Wiy 1) = {Zi,, W, ko < j < k} are asymptotically
sufficient for the Gaussian process and Poisson process experiments. See Brown
and Low (1996) for a detailed argument in the context of nonparametric regression.
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Mappings for the density estimation model. The constructive asymptotic
equivalence between density estimation experiments and Gaussian experiments
is established by first randomizing the density estimation experiment to an
approximation of the Poisson process and then applying the randomized mapping
as given above. Set y; = sup fex I f— fe ||% /22,2 and note that since # is compact
in B(1/2,2,2), yx | 0. Now let kg be the smallest integer such that gko /n > yi, and
divide the unit interval into subintervals of equal length with length equal to 270,
Let f, be the corresponding histogram estimate based on V.. Now note that since
functions f € Jf are bounded below by &g > 0 it follows that

(2.11) /()1(@_\/?)2 /(\/ﬁ \/—)2(\/?;4-\/—)2 /l(fn f)z

0 &0
Now

2.12) Ef(fn 1) -Ef ~ fio) +/ (f = Fio)?

and simple calculations show that the histogram estimate f, satisfies E f, (x) =
f_ko(x) and Varf,,(x) < fko(x)¥. Hence,

1 B 2ko
(2.13) nl/zE/ (fo = fis)* < nl/27 <22 > 0.

1/2 ~

Now n 1 /2 and hence, from (1.7),

ka

1 _ 1 _
2 2 1/2
(2.14) n1/2/0 (f = fro)” = m"f — frolli200 = Vko/ — 0.

ko

It thus follows from (2.11) to (2.14) that

(2.15) n'’2 sup E l(m—ﬁ)2—>0.
feH 0
Hence the density estimate is squared Hellinger consistent at a rate faster than
square root of 7.
Now generate N, a Poisson random variable with expectation n and indepen-
dent of V;. If N > n generate N — n conditionally independent observations
Viits s V4 with common density f,. Finally let (N,X) = (N, V}{, V5, ...,

V;I) and write R,ll for this randomization from V}, to (N, X i)
RY:VE— (N, X5).

A map from the Poisson number of independent observations back to the fixed
number of observations is obtained similarly. This time let f, be the histogram
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estimator based on (N, Xy). If N < n generate n — N additional conditionally
independent observations with common density f,. It is also easy to check that

1~
(2.16) n'2 sup E (\/E— \/7)2 - 0.
feH 0
Now label these observations V,, = (V, ..., V,,) and write R,z, for this randomiza-

tion from (N, Xy) to V,,,

R2:(N,Xy) = V,.

REMARK 2. It should also be possible to map the density estimation problem
directly into an approximation of the white noise with drift model. Dividing the
interval into 20 subintervals and conditioning on the number of observations
falling in each subinterval, the conditional distribution within each subinterval
is the same as for the Poisson process. Therefore, it is only necessary to have a
version of Theorem 4 for a 2%0-dimensional multinomial experiment.

Carter (2002) provides a transformation from a 2%0_dimensional multinomial
to a multivariate normal as in Theorem 4 such that the total-variation distance
between the distributions is O (kg2¥0n~1/2). The transformation is similar to ours
in that it adds uniform noise and then uses the square root as a variance-stabilizing
transformation. However, the covariance structure of the multinomial complicates
the issue and necessitates using a multi-resolution structure similar to the one
applied here to the conditional experiments. The Carter (2002) result can be
used in place of Theorem 4 to get a slightly weaker bound on the error in the
approximation in Theorem 3 (because of the extra kg factor) when the total number
of observations is fixed. This is enough to establish Theorem 2 if the inequalities
bounding o and B are changed to strictly greater than. It is also enough to establish
Theorem 1 if # is a Besov space with a > % Carter (2000) also showed that
a somewhat more complicated transformation leads to a deficiency bound on the
normal approximation to the multinomials without the added ko factor.

3. Main theorem. The theorems in Section 1 on the equivalence of white
noise with drift experiments and Poisson process experiments are consequences of
the following theorem which uniformly bounds the Hellinger distance between the
randomized mappings described in Section 2.

THEOREM 3.  Suppose info<,<1 f(x) > e9 > 0. Let Wy, ) = {71:0’ W, ko <

J <k} with the variables in (2.1) and (2.2), and Wiy, k) = {Zko, Wi, ko < j <k}
with the variables in (2.6) and (2.9). Then there exist universal constants C,
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D1 and Dy such that for all ki > ko,
2
H* (Wi k1y> Wiko.kn)

S D) P
2 9ke+ 2 Ok ¢
‘90 n 80 k=ky  £=0 3 4k k=ko
C 4ko n
“wn T ”f fko“l/222+ o 4k0“f Froll 120,00

where 6y ¢ are the Haar coeﬁ‘icients of fasin(1.3), fk isasin (1.6) and ||-l1/2,p,p
are the Besov norms in (1.5).

REMARK 3. Here the universal constant C is the same as the one in
Theorem 4, while D| = 3D +2and D; = 3 + 8 for the D in Theorem 5.

The proof of Theorem 3 is based on the inequalities established in Sections
4 and 5 for the normal approximation of Poisson and Binomial variables. Some
additional technical lemmas are given in the Appendix.

Let X m,p be aBin(m, p) varlable, X, be a Poisson variable with mean A, and U

be a uniform variable in [— 2, 2) independent of Xm, p and X . Define
- d _ ~ ~
(3.1) gm,p(x)EEP{(D YFn(Xm,p + 1)) < x}
with the F,, in (2.8) and the N (0, 1) distribution function ®, and define
- d S ~ = ~
(3.2) gx(x)zd—xP{2sgn(Xx+U)\/|X;\+U|§x}.
Write ¢, for the density of N (b, 1) variables.

PROOF OF THEOREM 3. Let g 1\ (Wikg,k)) and giky,k) (Wiko,k)) be the joint
densities of Wy, and Wy 1), gi(wi) be the joint density of Wi, and
8k (Wi |Wk, k) be the conditional joint density of Wy given Wy, x). Since Wy
is independent of Wi .

V 800 8lkok) — ¥ &k ki 1)8lko.k+1) =V &lio 1) 8lko. ) (1 — Vg 8K ),

so that the Hellinger distance can be written as

2
HE(Wiko k) Wiko.kn)

= 2<1 —/Vg['ko,k1>g[ko,k1>)

3.3) = 2(1 - / ‘/gfko,k0+1)g[k0,ko+1))
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+ ) 2/V8fk0,k)8[ko.k)<1 —fvg,:gk)

ko<k<k;
:H%(Tko’_z_ko)+ Z fVg[*ko,k)g[ko,k)Hz(gZ,gk)-

ko<k<ky

At the initial resolution level ko, Ni, . are independent Poisson variables
by (2.5), so that Z(o,g are independent. This and the independence of 7,:0,5
from (2.1) imply

2k0—1
— = _
I{%(Zk()’zko)S Z H%(Zo,e’zko,¢)~
=0

By (2.6) and (3.2) 7k0,e/0ko have densities glkoy[, while Zzo,e/o*ko are N (hy,e/
Ok, 1) variables by (2.3). Thus, Theorem 4 can be used to obtain

1 hi e)2
—( 2/ A s — —2=) .
+2( ko, ¢ o

2 S* = ~
Hf( Ziy.00 Zkye) = H%(g)\ko,l’ ‘phko,z/oko) = et
0,

Since Ax¢ = fi,e/(40?) by (2.7) and o = 2¥=2 /n by (2.3), the above calculation
yields

2k0—1 ko 2k0—1 o

2T 7 2
HNZy, Zi) <C Y + > 5V frot = hioe)
J4

= Mot i

22k 20710k
S
Z 283 Iy,

0-¢

(3.4)
5 2
(f = fiod) )

by Lemma 1(i) and the bound f > &.
Fork > kg and 0 < £ < 2k—1 — 1, define

(3.5) k20 = /mi20(2pr2e — 1), Br2e = VAk—1,02pr2e — 1),

where pi 2, are as in (2.10), g ¢ = fien /2K are as in (2.7), and the functions
my. 20 = myg 2¢(Wiko k) are defined by Ny_1.¢ = mi 20(Wk k). At a fixed reso-
lution level k > kg, and for £ =0, ...,2x"1 — 1, Ni 20 are independent binomial
variables conditionally on Wy, x), so that by (2.9) and (3.1) Wy 2¢/0k—1 are in-

dependent variables with densities g, ,,, p, ,, under the conditional density g¢. In

addition, W} ,, are independent normal variables with variance akz_l under gf.

Thus,

2k=1—1

(3.6) H2(g, &) < Z Hz(gmk,zevpk,u’ goﬂ/?,zz)’
£=0
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by (2.4), where B} 5y = EW[ 5, /0k—1 = ~/4n [ hpx—1¢. Tt follows from Theo-
rem 5 and (3.5) that for fixed wig, i),

2 ~
H*(8my 20, pi2e ‘pﬂ;ﬂ)
3.7 . o
172 174 (uk2e — Bioe)
< Dj}| Pkt — 3 + mg 20| Pr2e — 7 + —

Furthermore, it follows from Lemma 3 that

2
/ gfko,k)g[ko,k)(v Mkt — vV Ai—1,)

4
< \// 8iko, k) (/M2 — vV Ak=1,¢)

= \/E(\/Nk—l,e — Vi) <2,
so that by (3.5),

f 80 0 8lko k) (k26 — B 20)? S4Qpr2e — 1)* +2(Br2e — B 20)*-

Similarly, [ /gl 1) 8lko.0ymk20 <V ENZ_ |y < Ak—1,¢+ 1/2. Thus, by 3.7),

2 ~
/ngko,k)g[ko,k)H (gmk,zz,Pk,ze"pﬁ;ﬂ)

(3.8)
2 4 *
<4Di[proe — 31"+ Dhi—1,e[pr2e — 31" + (Br2e — Bi2o)%,

with D; =3D/8 4 2. Now, by (2.10) and (1.3),

(3.9 Pk,2 U oS = S / 2Ok
. 22— == = ,
2 2 f 2 fi-1,e

so that by (3.5), (2.7), the definition of :B/:,ze in (3.6) and Lemma 1(ii),

N nfk—1, N2k=1g
|Br.2¢ — B 20 =l fk~11e usLL V4n/h¢k—1,e
2 Jie—1,6
Ok—1,¢
(3.10) =¢4n|~—’——/h¢_,
2y fi-1,e ke

< «/4n2(k_1)/2_1fk131<25/1 (f = fe-1.0%

k—1,¢
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Inserting (3.9) and (3.10) into (3.8) and summing over £ via (3.6), we find
[ Vs #2600

2kl

2(~
Z /ngko,k)g[koyk)H (gmk,zz»Pk,ze"Pﬂ,:‘%)

2k-1—1 2 4
“O_ 40514

@11 < [41) L Dy g—LE
Z 8fl<2 1,¢ 64fl?—1,€

+ 2}12'2 : ( / U= fk_l,wz)z]

ok=1_1 k— 2
Dy ,_ D n2

< Y [—21 212, g+< + 1) ;] (/ (f—fk—1,£)2> ]
£ ’ 16 I—1.e

€0

due to A e =nfie/2F in (27) and 67, < [} ,(f — fi.0)*.
Finally, inserting (3.4) and (3.11) into (3.3) and then using Lemma 2 yields

2
H5 (Wi k1) Wiko.ki+1)

2ko klz kzkz—:l
neo  &f (= ko £=0
—22k —1 2
FEDET ([ g n)
k=ko £=0 &5 \JIe
k
C4k0 Dl k D2 n ad 3k2 iy
== 22 Z"kﬂr o ak D2 Zeke»
0 80 k=ky £=0 k=ko
with D25(16 2)/(1 -3 §+§and the theorem follows. [

4. Approximation of Poisson variables. Let X, be a Poisson random

variable with mean A and U be a uniform variable on —— —) independent of
X,.. Define

~ S — ~ d ~
4.1 Zy=2sgn(Xx + U)VIXy + U|, gA(Y)EEP{ZASy}-

The main result of this section is a local limit theorem which bounds the squared
Hellinger distance between this transformed Poisson random variable and a normal
random variable.
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THEOREM 4. Let Z, and g, be as in (4.1). Let Z5~ NQVX, 1) and ¢ be
the density of N(0, ). Let H(-, ) be the Hellinger distance. Then, as > — 00,
1
961"

Consequently, there exists a universal constant C < oo such that

(4.2) H*(Zy. Z3) = H*(&1. 0, s5) = (1 + 0(1))

4.3) H23,0,) <C/A+ (VA —w)?/2  ¥YA>0,pu.
REMARK 4. The theorem remains valid if Zj, is replaced by

ZiEZ,/X}L-I-lN]-}‘%,

since H2(Z,, fi) is bounded by

00 s A2j+1
2=2 [ [Tz i e <2- {1+j§0€ j!(j—l—l)!}
X c’
=1-E|2 smin(l, —).
A )

PROOF OF THEOREM 4. The second inequality of (4.3) follows immediately
from (4.2), since H2(<pm, Ouy) = (u1 — u2)2/4 [cf. Brown, Cai, Low and Zhang
(2002), Lemma 3] and H?(g;., ¢,.) < 2.

Let ¢ (x) = 2 sgn(x)+/]x], a strictly increasing function. Define

(4.4) X:=17(Z3) = sgn(Z5)(Z))* /4.
Let f; and f,* denote the densities of X; + U and X*, respectively. Since 7(-) is
invertible, H(Zy, Z¥) = H(X, + U, X¥) =2 — 2 [ /£ f. so that it suffices to
show
c
4.5) A,\Ef«/fxfk*=1——l, lim C; = 1%.
A A—00
Since U is uniform, fix)=e*AJ/jlon [j —1/2, j+ 1/2), so that
00 N 12
(4.6) =Y 50 [ R OTAIES
j=0 -

Since ¢’ (x) = |x| ™12, by (4.4) £ (x) = |x|712¢(t (x) — 2+/2). This gives

fAA(J') - 2mxe— A /! =exp[2¢;(x)], j—is<x<j+1i,
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for j > 1, in view of the Stirling formula j! = /27 j/*1/2exp(—j + €;), where

2 logx A []] logj j ¢
4. ix)=- — — —+ Zlog| = —_— -4 =
@) v =-(x=Vi) - ==+ Slog| S [+ =5 =S+
with 1/(12j + 1) < ¢; < 1/(12j), for j =1,2,.... Now, by the mean-value
theorem,

JHU2 ( FE(x) 12
f {fx ()_C)} dx
i1z LAG)
j+1/2 / v (x;) '
= eXP[!/fj(j)+wj(j)(x—j)+’—](x—J)z]dx
j—1/2 2
for some |x; — j| < %, with
N 1 v N 1

Since exp[v/; (j) + llf;/ (xj)(x — 7)?/2] is symmetric about j, it follows that

JH12 @ Fx 1/2
[
i=172 LAG)
J+1/2 Y= P
B e [ Lt
j-1/2 2 =0
Now, we shall take uniform Taylor expansions of v/; and their derivatives in

Bo={j:lj/a—11 <2725,
By (4.7), ¥;(j) = A (j/A) + &/2 with
1—x

Y(x)=—(vVx - 1)2 + —5 + %logx.
Since ¥ (1) =¢'(1) =¢"(1) =0, ¥ (1) = 1/4and ¥ (1) = —,

N_AG=2 TG -n _
w(3) =5 5 e (o) =o).

Since 1/(12j + 1) <& < 1/(12j), /2= (1 + 0(1))/(24)) = o(1). Thus,
G-» 7G-n* 1+o(1)
242 8 2413 24\

uniformly in Jj as A — oo. Similarly, by (4.8) and |x; — j| < %,

i — )2 1
(J4)L2) + 0;) =o(1),

W x = H*
(2k)!

X.

=o(l)

vi(j) = (I+o(D)) +

W)Y =(1+0(1)

” —1+o0(1)
Wj (xj)= o =o0(1).
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These expansions and (4.9) imply that uniformly in J;,
JH1/2 ( f* 172
)
i=172 LAG)
i+l . 2 =02
-/ o (140500 + e+ w01 552 ax
j—

)2k

(-
+ (I)Z Ak+1

(j—x>3 _T7G=0 1[—_1 <j—x)2}
2)

=1+

2402 8 2423 241 ' 24 422
(j—n*
+ (I)Z e
as f / +11//22 — )?dx = —5 Since f;(j) is the Poisson probability mass function
of XA,
j+1/2 1/2
Z Hl / {fA () dx
ieh 172 UAG)
(4.10) - 1 [7] 3 4 1 1 o(1) _q 7+ o0(1)
24n  |8J24x  24x 96A A 1922

as Y jey, /A(J) =1+ o(1/1). Note that EX,, — A3 =xand E(X, —M* =
312 + A. Hence, (4.5) follows from (4.6), (4.10) and the fact that

1/2 _ _
2N ])/]:;:2{28))} dx S\/P{XA¢JA}P{X:¢JA}=0(;:).
J¢

(]

5. Approximation of binomial variables. The strong approximation of a
normal by a binomial depends on the cumulative distribution function Fy, in (2.8).
The addition of the independent unlform U in (2.8) to the binomial X m.1 /2 makes

the c.d.f. continuous and thus ®~! o F,, is a one-to-one function on (—5, m—+ 2)
that maps symmetric binomials to standard normals.
Let ¢p be the N (b, 1) density and g, , be the probability density of

(5.1) O N EuXpmp +UD,  Xp.,~Bin(m, p),

as in (3.1), where U is an independent uniform on [—%, %).

THEOREM 5.  There is a constant Cy > 0 such that, for all m > 0,

) b2 b8
(5.2) Hz(gm,p,(pb)=[(vgmp ‘/_) dZ<C1< +m2)’
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where b = (y/m/2)log(p/(1 — p)). Consequently,

(5.3) Hz@m,,,,(,,ﬂ)SD[(p_%)ﬁm(p 2)] <f<2p;1>—ﬁ)2

PROOF. The case when m = 0 is trivial because X = 0 with probability 1 and
therefore go, is exactly an N (0, 1). Thus, the following assumes that m > 1.
It follows from (3.1) that

(5:4) &m.p(2) = p'(1 = p)" 2" p0().
where j = j(z) is the integer between 0 and m such that
(5.5) O Fn(j = D] =2 < @7 [Fulj+ 7))

Let 0 =log(p/q) so that

og gm,P(Z)=6<. m>+m10g(4pq)

00(2) 2 2

and the second term can be approximated by

02 94 2 2] —6 92 94
56 -2 <loglpg) = —log [—“L—"’f—e] <

4 24~
Let h1(0) = 2 + e ? + e7?)/4. The second inequality in (5.6) follows from
log(h1(8)) > log(1 + 62/4) > 6% /4 — 6% /32. The first inequality in (5.6) follows
from h1(0) < 1+ 62/4 +6*/24 for |0| < 4, and from log(h1(8)) < |0| < 62/4 for
|6] > 4. Now, let

i@ =m/2 _
—W and b_9——2—

Then for some —1/24 < hy(8) < 1/32 the log ratio is

(5.7 7=7@)=

8m p(z)

b?
=7b— — >+ ha (0)mo*.
®0(2)

The log ratio of normals with different means is log (¢o/@s) = —zb + b%/2.
Therefore the ratio with respect to the normal with mean b is

(5.8) log g’"b" = hyOmb* —bz—7),  |ha®)] < %
Since ylog(x/y) <x —y < xlog(x/y), for all positive x and y,

N S
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so that by (5.8),

H?(Zp.m. 0b) _4/{10g( )} (@b + &m.p) dz

m94 2 _

It follows from Carter and Pollard (2004) that the difference between z and
7' = 7/(2) is bounded by

(5.9)

(5.10) lz—7| < [Cz(m:i/2+m:1|z|3), for e
Com™ 2 +m~ 2Py, iflzl < 2m,
for some constant C,. Thus,
(5.11) /(Z - z/)2gm’p dz < 2C22(l + / @gm,p dz + Z—Zém,pdz).
m m 22>2m m

Since [ gm,pI{z' = (j —m/2)//m}dz = P{Xm , = j},

Xm _ 2 6 -1 6
o222 —ofr (25 ) o

uniformly in (m, p). It follows from (5.4) that
/ 26§m,p dz < Zm/ Loodz=02"mbe™)=0(m™").
252m 24>2m

The above two inequalities and (5.11) imply
/ (2 —2)28m,pdz <2C220(1/m + b%/m?).

Similarly, [(z — z/)?>@pdz < 2C220(1/m + b%/m?). Inserting these two inequali-
ties into (5.9) yields (5.2) in view of (5.7).

Now let us prove (5.3). The Hellinger distance is bounded by 2, so that b¥/m?
in (5.2) can be replaced by b*/m and it suffices to consider | p - —| <z for the
proof of (5.3). By inspecting the infinite series expansion of log( )= log( 1+x)—
log(1 —x) for x =2p — 1, we find that for |p — 1| < 1, |1og(g)| <82p—1|and
|log(f13) —4(p — %)l < g|2 p — 1. These inequalities, respectively, imply

> bt 16 256
—t—=<—Qp-1D2+—m@p-1
<5 Qp— 17+ Trm@p — 1)
and |b— /mQ2p— 1> < 81m|2p —11°< 81m|2p — 1]*, in view of the definition
of b, which then imply (5.3) via (5.2) and the fact that H?(¢p — ) =(b— ,B)2 /4.
O
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APPENDIX

A.1. The Tusnady inequality. The coupling of symmetric binomials and nor-
mals maps the integers j onto intervals [8;, B;+1] such that the normal(m/2, m/4)
probability in the interval is equal to the binomial probability at (';.')2_1 . Taking the
standardized values

_2(Bj—m/2) 2 —-1/2-m/2)
iy
Carter and Pollard (2004) showed that for m /2 < j < m and certain universal finite
constants C4

Cc_

2 2
. . 1 1—us/m ,
uj+1<zj ‘) u,) og(l —uj/ )< +uj+10gm
2cu; m

1428
m + ;y<\/ﬁ

where ¢ = /21og2 and y is an increasing function with ¥ (0) =1/12 and y (1) =
log2 —1/2.
This immediately implies that

C
(A1) l2j —ujl < —2(lu; P +logm) ¥ -L <
m m

for a certain universal constant Cy < 0o. We shall prove (5.10) here based on (A.1).
Because of the symmetry in both distributions, it is only necessary to consider
z>0.
It follows from (5.5) and (5.7) that
zj<z<zjyl = u;<7=7@ <ujq.

Letzj <z <Zzjy1.Sinceujy1 —uj=2//m,for “§+1 <m/2 (A.1) implies

2 N
A2) lz—ZI<lzj—uj|V|zje1 —u; ——<c/( )
( ) |Z Zl_lzj ujl |Z]+1 uj+1|+ﬁ_— 0 «/ﬁ-l_ m

Since u j and z; are both increasing in j, it follows that (z A z)/+/m are uniformly
bounded away from zero for u j 1 > 4/m/2, so that

(A3)  lz—Z|<lzj—uj|Vigjs1 —uj1l + SC6,|z|3/\|z’|3
A/m

for (m 4+ 1)//m =umy1 > ujr1 >m/2and z < +/2m.Since zVzZ' <z Vumyr <
N2z for z > +/2m, (A.2) and (A.3) imply

Co(m™12 £ m=1z)3), for all z,
Com™'2+m=NZ)P),  if |zl </2m,
for a certain universal C < 00, that is, (5.10).

lz—7|<
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A.2. Technical lemmas. The following three lemmas simplify the rest of the
proof of Theorem 3.

LEMMA 1. () Let fy ¢ and hy ¢ be as in (2.7) and (2.3). Then
(A4) 0<vfie—hee<21£."° - o
k.t
(ii) Let 6 ¢ be the Haar coefficients of f as in (1.3). Then

(A5) ‘ / hm——— S vl T
k,l

PROOF. LetT = (f — fi.¢)/fk,e > —1. By algebra,

T T T?
1+/T+T 2 200+/T+D)?*
It follows from (2.3) and (2.7) that

hie = 2k\/ fk,l/l V1+T
k.
ok S f=fie  (fF=fio)?
=2 fk,e _/[‘kl (1 + 2fk’e 2f,2€(1 + /1 + T)2)5

which implies (A.4) as 2¥ f,kz =1 and by (2.7) f,kl(f — fi,e) = 0. For (ii) we
have ' '

1+7—1=

[1ne =i [ eV TFT

B f=fee  (f=fio)?
= ka»f/‘f’k’f(l + 2fie  2f2,(0+V/T+ T)2)’

which implies (A.5) as [ ¢ ¢ =0 and |¢y.¢| < v/2¥ by (1.4). O

LEMMA 2. Let 60y ¢ be the Haar coefficients in (1.3) and fi ¢ be as in (2.7).
Then

2k_1 _
. ok 2~k k(14¢) 4 Ves 0
Y2 ([ o) = o Tt veo
k=ko =0 “7lke ( /2°)
PROOF. Define
5 L= { I, if I; j C Iy,
bk = 0, otherwise.
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Since 3 8, j ke = 2'~% for i > k, using Cauchy—Schwarz twice yields

( Iu(f‘- f-k)z) (izil& ik 00 ])

=k j=0

00 2i_1 1/242
< |:22 10/2(21c21—k Z 8 ]kfel ]) ]

i j=0
201
< 22 ic Zztczl—-k Z 5[ g kﬁel '
y—k(l+¢) " )2"-1 A
! C ..
< ITiw ;2 X_j 8i.jk.e6r -
i=k j=0

. k_ . . e s .
Since Z%zol di,j ke = 1 for i > k, the above inequality implies

3 ot Zkf ( - fk,e)z)z

k=ko =0
o] k2—k(1+c) 00 201251 .
- i(14c) ..
= LT 2T L 2 Skt
=ko i=k j=0 ¢=0
=Z(Z ) t(1+c)294
i=ko \k=kgy 1/2c
2 —ckg 201
pi(14c) 94
1/2c)2 Z Z

_kO

LEMMA 3. LetX 1 be a Poisson random variable with mean \. Then

EWVX,—vx)' <4
PROOF. Since E(X; — M)*=ABA+ 1),

EVZ, — VAt < Ezf} )+A2P()?A=O)
341

—+1=<
_A+6+
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A.3. Proof of Theorem 1. First note that
H(TnR;V;’ 7)< H(TnR,l,V}',, T,(N,Xy)) + H(T.(N,Xn), Z})
and

H(VY, R2T'Z*) < H(VE, RA(N, Xy)) + H(RX(N, Xn), R2T,'Z})).

n

Note also that since for any randomization T and random X and Y, H(T X, TY) <
H(X,Y), it follows that

H(T,RIV:, T,(N,Xy)) < H(RIV:, (N, Xp))

n n? n n’
and
H(RX(N,Xw), R2T,'Z%) < H((N,Xp), T, 'Z}) = H(T,(N,Xn), Z},).

For the class #¢ and the randomizations R,‘, and R,% it follows from (2.15), (2.16)
and the proof of Proposition 3 on page 508 of Le Cam (1986) that

sup H(RIV?:, (N, Xy)) — 0
feH

and

sup H(V*, RZ(N,Xy)) — 0.
fedt

Hence (1.9) and (1.8) will follow once

(A.6) sup H(T,(N,Xn),Z,) —> 0
feH

is established.
By Theorem 3, for (A.6) to hold it is sufficient to show that

4k0 = 12 n = 4 0
;25{ - T If = frollij220+ Zg"f — feoli/2,44 ) = O
If the class of functions J is a compact set in the Besov spaces, then the partial
sums converge uniformly to O,

sup || f — fillijz.p.p = 0
feH

for p =2 or 4 as k — oo. This implies that there is a sequence yx — 0 such that
yk_1 SUP e ¢ Nf - fkll‘{/z,4,4 — 0. To be specific, let

Yk =sup || f — f_k||%/2,4,4'
fe#t
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It is necessary to choose the sequence of integers ko(n) that will be the critical
dimension that divides the two techniques. Let ko be the smallest integer such that

k
% > Yk, Therefore, ko(n) — oo, and as n — oo,

(17 = Full o+ gl = Fultoas)
fsggf " koll1/2,22 7 2i koll1/2,4,4

z 2 1 = 4
= sup (4)/k0 +|f = fro “1/2,2,2 +—If = fuo "1/2,4,4) — 0. O
feH Vko

A4. Proof of Theorem 2. Theorem 2 follows from Theorem 1 and the fact
that the Lipschitz and Sobolev spaces described are compact in the Besov spaces.

The Lipschitz class is equivalent to Bg o,00 and therefore is compact in
Biy2,p,pif B> % The Sobolev class is equivalent to B, 22 and

If = frol2 20 < Ca Y len ()20,

where C, depends only on «. Thus if ¥ is compact in Sobolev(«) for o > % then
it is compact in 81,22 2.
Further restrictions are required to show that the Sobolev(«) class is compact in
L ;7 —
Biaa- KL < Cawy. then [ fi — firtlloo < Czy27*, s0 that

o
| f = fio "‘1‘/2,4,4 = C(2L) Z 2k2(1_ﬂ)/ Ifx — fee1>dx
k=ko

-
=Co,lf = fuo li—p).2.2-

Therefore, for ¥ bounded in Lipschitz(8), a compact Sobolev(x) set is also
compactin By 44 ifa>1-—B.

Finally, if ¥ is compact in Sobolev(x), @ > 3/4, then it immediately
follows from the Sobolev embedding theorem that the function is bounded in
Lipschitz(1/4) [e.g., Folland (1984), pages 270 and 273], and it follows that ¥
is compactin 81,2 44. O

Acknowledgments. We thank the referees and an Associate Editor for several
suggestions which led to improvements in the final manuscript.

REFERENCES

BrRoOwN, L. D,, CAL T.,, Low, M. G. and ZHANG, C.-H. (2002). Asymptotic equivalence theory for
nonparametric regression with random design. Ann. Statist. 30 688-707.

BROWN, L. D. and Low, M. G. (1996). Asymptotic equivalence of nonparametric regression and
white noise. Ann. Statist. 24 2384-2398.

BROWN, L. D. and ZHANG, C.-H. (1998). Asymptotic nonequivalence of nonparametric experiments
when the smoothness index is 1/2. Ann. Statist. 26 279-287.



EQUIVALENCE THEORY FOR DENSITY ESTIMATION 2097

CARTER, A. V. (2000). Asymptotic equivalence of nonparametric experiments. Ph.D. dissertation,
Yale Univ.

CARTER, A. V. (2002). Deficiency distance between multinomial and multivariate normal experi-
ments. Ann. Statist. 30 708-730.

CARTER, A. V. and POLLARD, D. (2004). Tusnady’s inequality revisited. Ann. Statist. 32. To appear.

EFROMOVICH, S. and SAMAROV, A. (1996). Asymptotic equivalence of nonparametric regression
and white noise has its limits. Statist. Probab. Lett. 28 143-145.

FOLLAND, G. B. (1984). Real Analysis. Wiley, New York.

GOLUBEV, G. and NUSSBAUM, M. (1998). Asymptotic equivalence of spectral density and
regression estimation. Technical report, Weierstrass Institute, Berlin.

GRAMMA, 1. and NUSSBAUM, M. (1998). Asymptotic equivalence for nonparametric generalized
linear models. Probab. Theory Related Fields 111 167-214.

LE CaM, L. (1964). Sufficiency and approximate sufficiency. Ann. Math. Statist. 35 1419-1455.

LE CaM, L. (1986). Asymptotic Methods in Statistical Decision Theory. Springer, New York.

LE CAM, L. and YANG, G. (1990). Asymptotics in Statistics. Springer, New York.

MILSTEIN, G. and NUSSBAUM, M. (1998). Diffusion approximation for nonparametric autoregres-
sion. Probab. Theory Related Fields 112 535-543.

NUSSBAUM, M. (1996). Asymptotic equivalence of density estimation and Gaussian white noise.
Ann. Statist. 24 2399-2430.

L.D. BROWN A. V. CARTER

M. G. Low DEPARTMENT OF STATISTICS

DEPARTMENT OF STATISTICS AND APPLIED PROBABILITY

THE WHARTON SCHOOL UNIVERSITY OF CALIFORNIA, SANTA BARBARA
UNIVERSITY OF PENNSYLVANIA SANTA BARBARA, CALIFORNIA 93106-3110
PHILADELPHIA, PENNSYLVANIA 19104-6340 USA

USA E-MAIL: carter @pstat.ucsb.edu

E-MAIL: Ibrown@wharton.upenn.edu
lowm @ wharton.upenn.edu

C.-H. ZHANG

DEPARTMENT OF STATISTICS

504 HiLL CENTER, BUSCH CAMPUS
RUTGERS UNIVERSITY

PISCATAWAY, NEW JERSEY 08854-8019
USA



	Article Contents
	p.2074
	p.2075
	p.2076
	p.2077
	p.2078
	p.2079
	p.2080
	p.2081
	p.2082
	p.2083
	p.2084
	p.2085
	p.2086
	p.2087
	p.2088
	p.2089
	p.2090
	p.2091
	p.2092
	p.2093
	p.2094
	p.2095
	p.2096
	p.2097

	Issue Table of Contents
	The Annals of Statistics, Vol. 32, No. 5 (Oct., 2004), pp. 1781-2341
	Front Matter
	Nonparametric Inference
	Periodic Boxcar Deconvolution and Diophantine Approximation [pp.1781-1804]
	An Adaptation Theory for Nonparametric Confidence Intervals [pp.1805-1840]
	Robust Nonparametric Inference for the Median [pp.1841-1857]
	Sieve Empirical Likelihood Ratio Tests for Nonparametric Functions [pp.1858-1907]
	The Hough Transform Estimator [pp.1908-1932]
	Wavelet-Based Estimation with Multiple Sampling Rates [pp.1933-1956]
	On the Testability of the Car Assumption [pp.1957-1980]
	On Optimal Spatial Subsample Size for Variance Estimation [pp.1981-2027]

	Bayesian Analysis
	New Approaches to Bayesian Consistency [pp.2028-2043]
	On the Posterior Distribution of the Number of Components in a Finite Mixture [pp.2044-2073]

	Density Estimation
	Equivalence Theory for Density Estimation, Poisson Processes and Gaussian White Noise with Drift [pp.2074-2097]
	Attributing a Probability to the Shape of a Probability Density [pp.2098-2123]
	Bump Hunting with Non-Gaussian Kernels [pp.2124-2141]

	Experimental Design
	Optimal Designs for a Class of Nonlinear Regression Models [pp.2142-2167]
	Geometric Isomorphism and Minimum Aberration for Factorial Designs with Quantitative Factors [pp.2168-2185]

	Inference for Diffusions
	Estimators of Diffusions with Randomly Spaced Discrete Observations: A General Theory [pp.2186-2222]
	Nonparametric Estimation of Scalar Diffusions Based on Low Frequency Data [pp.2223-2253]

	Hidden Markov Models
	Asymptotic Properties of the Maximum Likelihood Estimator in Autoregressive Models with Markov Regime [pp.2254-2304]
	Asymptotic Operating Characteristics of an Optimal Change Point Detection in Hidden Markov Models [pp.2305-2339]

	Correction: Smooth Discrimination Analysis [pp.2340-2341]
	Back Matter



